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Abstract

A single, augmented Extended Kalman Filter (EKF), which simultaneously and autonomously

estimates spacecraft attitude and orbit has been developed and successfully tested with real

magnetometer and gyro data only. Because the earth magnetic field is a function of time and

position, and because time is known quite precisely, the differences between the computed and

measured magnetic field components, as measured by the magnetometers throughout the entire

spacecraft orbit, are a function of both orbit and attitude errors. Thus, conceivably these

differences could be used to estimate both orbit and attitude; an observability study validated this

assumption. The results of testing the EKF with actual magnetometer and gyro data, from four

satellites supported by the NASA Goddard Space Flight Center (GSFC) Guidance, Navigation,

and Control Center, are presented and evaluated. They confirm the assumption that a single EKF

can estimate both attitude and orbit when using gyros and magnetometers only.

I. INTRODUCTION

Many future low-budget missions, such as the NASA Small and Mid-Size Explorer

Series and university class explorers, are looking for inexpensive and autonomous approaches to

orbit and attitude estimation. One sensor being considered as a prime is the magnetometer

because it is reliable and low cost. For these reasons, magnetometers have been the focus of

several recent studies. Emphasis has been placed on using only the magnetometer to separately

estimate the spacecraft trajectory _'2'3 and attitude 4'5. Studies have also been performed which
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show remarkable accuracy of the magnetometer in estimating attitude when accurate rate

information is available".

In this work, we present the design and test results of a single extended Kalman filter and its

application to actual data obtained from four satellites; namely, Compton Gamma Ray

Observatory (CGRO, NORAD No. 20580), Rossi X-Ray Timing Explorer (RXTE, NORAD No.

23757), the Earth Radiation Budget Satellite (ERBS, NORAD No. 15354), and the Total Ozone

Mapping Spectrometer-Explorer Platform (TOMS-EP, NORAD No. 23940). The present work is

an extension of the research reported on in Ref. 7 where both attitude and trajectory have been

successfully estimated using simulated magnetometer and rate data. In that work large initial

errors were applied with a resulting accuracy of 4 km root sum square (RSS) in position and less

than 1 degree RSS in attitude.

In the work presented here, we summarize the derivation of the EKF, highlighting the

development of the measurement matrix, which constitutes the crucial element in combining the

dependence of the magnetic field residuals on both attitude and trajectory estimation errors. The

satellites considered here vary in inclination (23 degrees for CGRO to 97 degrees for TOMS-EP)

and in size of the magnetometer quantization error (0.3 to 6.4 milliGauss). Comparisons are

made with operational estimates of position, velocity, and attitude that were very accurate with

respect to the filter generated estimation errors (e.g. CGRO position measurement error was less

than 1000 meters and that of ERBS was within 200 meters, etc.). These reference values were

computed by NASA Goddard Space Flight Center (GSFC) flight dynamics personnel. We show

the ability of the filter to overcome large initial errors and a comparison of the final accuracy

achieved with each satellite. This work could prove valuable as a prime trajectory and attitude
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estimationsystem ["orsatellites with coarseaccuracyrequirements,or as a backup to a prime

systemin satelliteswith greateraccuracyneeds.

II. EXTENDED KALMAN FILTER (EKF) ALGORITHM

For clarity of the developments that will follow we review the special features of the EKF

algorithm that was used in this work. The EKF algorithm is based on the following assumed

models:

System Model:

Measurement Model:

X(t) = f(X(t),t) + w(t)

Yk÷t = hk÷l (X(t k+l)) + Vk+l

(1 .a)

(1 .b)

where w(t) is a zero mean white process noise, Vk+ t is a zero mean white sequence measurement

error, and X(t) is the state vector. In this work X(t) is defined as

xT= [a, e, i, f2, co, 0, Cd,b T, qT] (2)

The first six elements of X(t) are the classical Keplerian orbital elements s'9 which determine the

spacecraft orbit, position and velocity; namely, the semi-major axis (a), eccentricity (e),

inclination (i), right ascension of the ascending node (f2), argument of perigee (co), and true

anomaly (0). C d is the drag coefficient, b is a vector of the on board gyro constant drift rates,

and q represents the attitude quaternion.

The EKF used in this work is a unified filter that consists of an orbital part and an attitude

part. Thus Eqs. (l) are written as

Ex°l=t'l+E'lX_ f_(X_(t),t) w_
(3.a)



and

_vhere

and

Ya+t = ha.t(X,(ta+lt, X_(t_+t)) + v_.l (3.b)

Xor = [a, e, i, CL o, 0, Ca]

X_ = [b', q r ]

(4.a)

(4.b)

The processes, which are applied in order to derive the linearized dynamics and measurement

models used in the EKF, treat the orbital and the attitude parts differently according to the

specific physical natures of each part. The difference in treatment is expressed in the

development of the measurement model as well as in the development of the dynamics model.

The development of the orbital part of the measurement model is done by the customary partial

differentiation, Oh/0X o , which yields a Jacobian matrix t° whereas, as will be explained later, the

attitude part is done using the perturbation method. Similarly, in the development of the orbital

part of the dynamics matrix, the customary partial differentiation yields the Jacobian matrix

Of,,/0Xo. However, as will be shown later, the development of the dynamics model that

describes the evolution of the attitude error between measurement updates is done entirely

different.

The state vector usually consists of three kinds of states; those that describe the dynamics

of the system, those that are augmented due to the nonwhite nature of the stochastic processes

that drive the dynamics model, and those that are augmented due to the same in the measurement

noise. In our case the states a, e, i, fl, o, and 0 that appear in X of Eq. (2) are states that describe

the system dynamics. The state C a is a non-white state driving the dynamics model, which was

augmented via the state augmentation procedure. Similarly q is a state vector that describes the

dynamics whereas b, the gyro bias state vector that drives q, is non-white, and as such is also

augmented into the state vector. Sometimes it is also necessary to describe the measurement error



asacombinationof white noiseandcolorednoise_,which, asmentionedbefore,resultsin further

augmentationof the non-white vector into the state vector. However in our filter this was not

necessary.

We now proceed to describe the measurement update stage and the propagation stage of

the EKF algorithm used in this work.

II.1 EKF Measurement Update

The measurement update of the state estimate and of the estimation error covariance are

performed, respectively, as

5[k+l (+) = Xk+l(--)+ Kk+l[Yk+l -- hk+l(Xk+l(--)) ] (5.a)

Pk+l (+) = [I -- Kk+tHk+ 1]Pk+l (--)[I -- Kk+lHk+ 1IT + Kk+iRk+lKkT+l (5.b)

where (-) denotes the a-priori value and

Kalman gain computed according to

(+) denotes the a-posteriori value, and Kk+ t is the

where

T
Kk+I = Pk+l (--)Hk+l [Hk+IPk+l (--)HT+! + Rk+l ]-l (6)

Hk. , = [Ho ]H. ]t+, (7)

and where Ho is the orbit part of the measurement matrix, and H, is the attitude part. The matrix

Pk+t is the estimation error covariance matrix, and Rk+ l is the covariance matrix of the zero mean

white sequence vk+t

Let us denote Yk< - hk+l(Xk+t(-)) ofEq, (5.a) by Zk+t . The latter is the data, which is used

by the EK.F to update the a-priori state estimate. This data, which is called effective measurement,



is !he difference bet_,veen the measurement and the estimate of the measurement. Theretbre in our

case the data, Zk+_. used by the filter is computed as

zk. , = Bm.k_I - B(Rk. 1(-), tk. , ) (8)

here Bin,k+ l is the magnetic field vector measured by the magnetometer, B(Xk+_(-),tk+ _) is the

estimated magnetic field vector as a function of the estimated state at time tk+ _computed using a

10 'h order International Geomagnetic Reference Field (IGRF) model.

Define Xk+_ as the difference between the true state vector Xk+ _and its estimate; that is,

v = [Sa, 6e, 6i, 6_, 6co, 60, 6C d, _b v , a T ]k.t (9)
Xk+l

A comparison between X, defined in Eq. (2), and x, defined in the last equation, reveals that

other than q, the latter is a perturbation of the former. In x the expression for q is replaced by a.

This is done because, as will be shown later, in the EKF update stage we express the attitude

error by a vector of small angles, a, whereas in the propagation stage we express the attitude by

the quaternion q. We use Zk+ 1, [Eq. (8)], to update the estimate, ik+ 1 of Xk÷_ as follows

ik+l = Kk+IZk+l (10)

The updated vector,ik+_,isused toupdate the a-prioristateestimate,Xk+_(-), as follows

= ik.,) (ii)

The nature of g will be explained shortly.

Development of the measurement matrix

Figure 1 shows the geometry of the magnetic field vector. The U coordinates are earth

fixed coordinates and the I are inertial coordinates. Both coordinate systems are fixed to the earth
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center. The Magnetic field vector is expressed in the magnetic spherical coordinates, F, as

follows B r = [B r, Boa, B,a ]. Begin the development of the measurement matrix using the

perturbation technique, by writing the estimated magnetic field at the spacecraft location as

B(X,t) = D_bl3_i3v + v' (12)

where 13v is computed using the IGRF magnetic field model, the estimated position and time,

D_ is the estimated transformation matrix that transforms from magnetic spherical to inertial

coordinates, I)_ is the estimated attitude matrix which transforms the estimated magnetic field

vector from the inertial to the body coordinate system, and v' is the magnetic field model error.

(Note that we consider the situation at time point tk+x; however we drop the subscript k+l for

clarity). On the other hand,

magnetometer, can be written as

where B F

the measured magnetic field vector, as measured by the

I F

B m = DbDxB F + v m (13)

is the correct magnetic field vector in magnetic spherical coordinates, D[ is the

correct transformation from the magnetic spherical to the inertial coordinates, D t is the true

transformation from inertial to body coordinates, and v m is the magnetometer measurement

error.
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Fig. 1: Definition of the magnetic spherical coordinates

The effective measurement, z, is defined as follows.

z=B m B(X(-),t) , F ^I"F^--V'- = DbD IB F + v m - DbD IB r (14)

Write the transformation of 13F to the estimated body coordinates as

616[§F = D_DFBF + A(D[DFBF) (15)

where A(D[D_B r) is the error in the estimation of the magnetic field vector resolved in the

body axes. Define

V:Vm--V' (16)

Using the last two equations, Eq. (15) becomes

z = A(D_D_BF) + v (17)

Now

A(D_D_BF) = AD_(D_BF) + D_,A(DFBF) (lS)

The second term on the fight hand side of Eq. (18) is the part of the effective measurement

caused by errors in the orbital states. This term can be developed into HoXoWhere Hois the



n_easurententmatrix for the orbital statesand xodenotesthe orbital error states,v_hichare the

first sevenelementsof x, that aredefined in Eq.(9). The derivationof H,Xois given in Ref. 10

where Howasdevelopedusingpartialdifferentiation

ah(Xo,X ) xHo- =:t

The expansion of the first term leads to the measurement matrix for the attitude states.

that term as

&D_(D_BF) = AD_B x

(19)

Rewrite

(20)

where B I is the computed magnetic field vector in inertial coordinates. We define AD'b, the

error in the transformation, as the difference between the correct body coordinates and the

computed (estimated) body coordinate system. The computed coordinates are determined by the

computed (estimated) transformation matrix, I5_,, which is the transformation from the inertial to

the computed (rather than the correct) body coordinate system. We write it as

^ b I
DI =DIc =DcD b

AD_=6_,-D_ b I=DcDb-D _

SO

(21)

(22)

For small attitude errors we can assume that the matrix D¢b is composed of small angles, thus

+o+]D b=I- 0

qo

(23)

where [ax] is the cross product matrix of a defined in the last equation, and where

at= [% 8., tg]. The vector a is a vector of three small Euler angles describing the attitude

difference between the true and estimated attitudes. These errors are defined about the body x, y,

and z axes respectively. Using Eq. (23) in Eq. (22) yields



ADI,=([-[_x ])DE_- DI, :-[_tx ]Dtu (24)

Substituting Eq. (24) into the first term on the right-hand side of Eq. (18) yields

',XD'b(D[B_) = -[_ ×]D' bB, =-[c, ×]Bb =[B_ ×] a (25)

Following the last equation we substitute the first term of Eq. (18) by [Bbx]a and, following

earlier discussion, the second term by Ho Xo. Substituting the result into Eq. (l 7) yields

z =[B bx]a+Hox o + v (26)

The error state, x, is composed of the orbital error states denoted by x o, the error in estimating

the gyro bias, 8b, and the vector of small angular errors in the attitude, a (see Eq. 9). Therefore,

in order to relate z to x we need to introduce a matrix that relates 8b to z. However, 8b has no

direct influence on z, therefore we can write Eq. (26) as

z =[H o 103x, I[Bbx]] x+v (27)

where 03x3 is a 3 x 3 zero matrix. (Note that b is introduced into the state vector, X, because it is

a non-white vector driving the attitude. In order to comply with the requirement of the KF that

the driving force be white, b is augmented with the original state vector. This is a well-known

standard procedure. The existence of b in X results in the existence of 8b in x.) Following Eq.

(27), the combined measurement matrix is given as

H = [Ho 103x_ I[Bbx]] = [Ho IH,] (28)

where H, =[03_3b I[Bbx]]. Because B b is not known, Bin, the mag-netic field vector measured

by the magnetometer, is used instead, thus

H, =[03x _ I[BmX]] (29)

An explicit expression for H o is given in Ref. 10 using partial differentiation.
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We realize that a new state vector, a, has emerged in the development of the

measurement matrix. This vector of angular errors expresses the attitude error between the true

and estimated attitude. We will show shortly that this vector will easily blend with the orbital

error states. Using Eqs. (26) and (27), the effective measurement at time tk+ _ is written as

Zk+! = Hk+IXk+ I + Vk+ I (30)

where

r =[6a, 6e, 6i, G_,&o, GO, 6Cd, r r6b ,a ]k+l (31)Xk+l

Define

Xo.k._z = [Ga,5c,5i,G_, &0, 50,5Cd]_+_ (32)

from Eqs. (3l)and (32)itisobvious that

T T T

xk+,---[Xo,k+,,5bT,at+,] (33)

T defineSimilar to Xo,k+I,

r = [a, e, i, f2, co, 0, C d]k+t (34)Xo,k+l

then from Eqs. (2) and (4) we obtain

XkT+t T r= [Xo,k÷,,br, qk+,] (35)

With Eq. (35) wc can now explainthe nature of g in Eq. (Il).Indeed, the update of the state

vectorestimate isa function of both Xk+1(--)and ik+l which iscomputed using Eq. (9).While

the orbital and the gyro bias parts of Xk+l (--) are updated additively as follows

bk+,(+) J L bk+,(--) J Gk-,
(36)

the attitude part is updated multiplicatively as described next. It is well known that the three

small angles in the vector, fit, can be used to construct a quatemion d61 as follows t_

d_r=[-_, 5-8,'" Tt¢,'" l] = [+fir,1] (37)
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where d(i is tile estimateof dq which expressesthe small attitudedifferencebetweenour best

estimate of the attitude and the correct attitude. In other word, if one rotates the correct

coordinate system, whose orientation is expressed by qk.,, through the rotation expressed by dq,

one reaches the current (a-priori) estimate of the orientation expressed by t_k,.t(-). This is

represented by

t]k+t (-) = qk+l ® dqk+l (38)

where ® denotes a quatemion product. Post-multiplying Eq.(38) by the inverse of dqk÷, yields

"_ -I
qk+, = qk+t (--) ® dqk÷, (39.a)

If dqk+l is known precisely then the operation elk., (-) ® dq_'÷, yields qk.,, but because we have

^ "-' yields only the estimate of qk+lonly an estimate, d_k+t, of dqk+t the product qk+,(-)®dqk+l

Because d_k+z is the a-posteriori estimate of dqk+,, this new estimate of qk+, is the a-posteriori

estimate. In other words

_k+_ (+) = 4]k+,(--)® dqk+,'-' (39.b)

The last equation can be viewed as a correction to qk+_(-) which yields fit÷,(+). In order to

assure the normality of the quatemion, normalization is performed at this stage, which yields

qk÷, (+) = q_÷, (+5/Iq k÷,( +)l (39.C)

Following Eq. (35) the full updated state vector is given by

^ T ^ T AT _T q_bk.lXk+,(+) = [Xo,k+, (+), ,qk.,( )] (40)

II.2 EKF Propagation

Recall the dynamics equation (3.a)

IX ] If°(X°(t)'t)l+Iw° 1 (3.a)x,J =LL(X,(t),t) LW, J
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The propagation of the covariance is given as

Pk+l (-) = Ak (Xk (+))Pk (+) AT (Xk (+)) + Qk (41)

where Qk is the spectral density matrix of w(t) and A k is the approximated transition matrix.

A k is computed using the following first order Taylor series expansion

Ak=I+F k.AT (42)

where AT is the time interval between gyro measurements. As described earlier, the dynamics

matrix of the orbit part is obtained by computing the Jacobian Fo,k as follows

Fok - Of(Xo (t), t) I, gx x= 5q(-)
(43)

The actual computation of Fo,k is based on the orbital dynamics equations, given in the ensuing.

Based on Eq. (1), the propagation of the state estimate, is performed by solving the differential

equation

X(t) = f(X(t), t) (44)

The updated estimate of the state vector, 5(k(+ ) serves as the initial condition of the solution,

and the final solution at time tk+ _ is 5_k+t(-- ). The dynamics equation (44) consists of the orbital

dynamics equation, which in our case, is non-linear, and the attitude kinematics, which is linear.
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!I.2.1 Nominal Dynamics

Orbital Dynamics

The orbital dynamics describe the motion of a mass point in a central force field

including drag _:. There are several possibilities to describe the orbital dynamics. The most

natural possibility is by position, velocity and acceleration expressed in a Cartesian coordinate

system. The advantage of this choice is in its ability to handle orbits which are completely

circular but its disadvantage is in the fast change of the state that describes the dynamics. This in

turn requires an increased computational load. One can also choose equinoctial variables 13 to

describe the orbital dynamics. This choice too enables the handling of completely circular orbits.

Moreover, all but one variable of the equinoctial variables change slowly [see Ref. 9, p. 143].

Finally, one can use Keplerian parameters, which, similarly to the equinoctial variables, include

only one fast varying parameter. Although these parameters cannot describe perfectly circular

orbits, as will be seen later, they can handle nearly circular orbits. For this reason and because

Keplerian parameters are widely used and well understood we chose them for the present study.

The differential equations for each of the orbital elements of the state vector X, including

the drag coefficient are given as t°

xl -- :_ = 2a( 2a - r) ,f--;t, (45.a)
r v

2f t f, r

x2 = e = --_-(cos 0 + e) + _-aSin0 (45.b)

• rf h •

x3 = i = --fi--cos0 (45.c)

rfh
X_ = _-- h.siniSin0" (45.d)
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1 2t'_ fn r
x5 = 6) = e[--_-sin 0 - _-(2e + -cosO)]- _cosi (45.e)a

k 6 = 0 = --7-h _cosi-ch (45. 0
r"

9"7 = Cd = 0 (45.g)

where ft, fn and f, are the along track, radial, and cross track perturbing accelerations due to the

effect of drag, and where

0* =0_+0 (46.a)

h = 4_t Ea(1 -- e 2 ) (46.b)

a(1-e 2)

r = 1+ ecos0 (46.c)

-'r'V= 2p.E(-_a ) (46.d)

and P'E is the earth gravitation constant.

Attitude Dynamics

The linear differential equation governing the dynamics of the attitude quatemion is given by

¢1= _-_q (47.a)

where _ is a 4x4 skew-symmetric matrix containing the elements of the spacecraft rate vector

as measured by the gyros xt. We assume that the gyros have bias, and using the state

augmentation approach Za, mentioned in Section II, the three bias states were included in the state

vector (Eqs. (2) and (4.b)). The bias states model is

I) = 0 (47.b)
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It shouldbe mentioned here that although the correct modeling of bias is as shown in Eq. (47.b),

we added white driving noise for filter stability _s.

II.2.2 Error-State Dynamics

Orbital Error-State Dynamics

The error dynamics model can be written as follows

I:oF = (48)

where Fo is the orbital part and F, is the attitude part of the error state dynamics. From Eq. (32)

it is obvious that the dimension of Fo is 7 x 7. The elements of this matrix are obtained when

applying the partial differentiation of Eq. (43) to Eqs. (45). In the case where the drag coefficient,

C d , is not being estimated and the effect of J2 is neglected, the non-zero elements of Fo are as

follows '°. Let

f6 = (1+ e.cos0)

then

f,6,, = -3f6(X) (50.a)

[a(1 - e2)] 3/2
(49)

fa62 = 3e 2cos0 ]
' 1-e 2 +l+e.cos0_]f6(X)

(50.b)

2e. sin 0
f,,6 = f6(X) (50.c)

' l+e.cos0

In the more general case where Cd and the influence of J2 are considered, the development of

Fo is more lengthy and is found in Refs. 10 and 11.
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from which we obtain

Attitude Error-State Dynamics

As mentioned earlier, the development of F_,

evolution of the attitude and gyro bias errors between

differently than that of Fo . From Eq. (37)

=r' a r l]dq r L7 ,

Generalization of the relation expressed in Eq. (38) yields

4=q®dq

q =/l®dq +q®d/l

the dynamics model that describes the

measurement updates, is done entirely

(51)

(52)

(53)

(54)

co presented in quatemion form [see Ref 16], and

Noting that q-, ® q = u, where u is the unity quatemion, we get from the last equation

d/l=q < ®_l-q -t ®/1 ® dq

We can replace /1 by 7q ®_, where _ is

similarly _1 by Xq®_m2 , where _m is the measured angular rate,

quatemion form. The last equation then becomes

d/l q-t®t^ _q<= _-q® _m ® _q ® _ ® dq (55)

Using Eq. (52) as wcll as the rclationcorn= e)+ de) (whcre de) isthe angular ratemcasurcmcnt

error,which, inour case, isthe gyro driR rate)Eq. (55) can bc writtenas

d/l = q-t ® {q ® dq ® (_ + d_) - q-' ® {q ® _ ® dq (56)

Eq. (56) can be written as

dq = ½[dq ® _ - _ ® dq] + ½dq ® d_

Using the rules of quatcmion multiplication[scc e.g.Rcf. II, p.

quatcmion [dq ® fi- _ ® dq] isidenticallyzero;thatis

to m, presented also in

(57)

759], the real part of the
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[dq®c_-G_dq] r=0

wherer denotestherealpart. Similarly we find that

[dq®d_]r =-do t•-ra _0

(58.a)

(58.b)

where do is a vector.For the imaginarypartof thequatemion[dq ® _ - _ ® dq] we find that

[dq®_ -_ ® dq]fm = 2ox va* (59.a)

where Im denotes the imaginary part, and o is a vector. For the imaginary part of the

quatemion [dq ® d_] we find that

[dq ® d_]_ = do_ + do x {a _. do (59.b)

Using Eqs. (58) and (59), Eq. (57) becomes

= o x a + do (60.a)

The term do is the error introduced by the gyros, which we assume it consists of two parts: a

very low frequency signal, and a wide band signal. We modeled the former as bias and the latter

as white noise; thus

do = b + n (60.b)

where b is the bias state whose model was given in Eq. (47.b). As mentioned earlier, b was

augmented with the original state vector (see Eq. 2). In the error state vector, x, defined in Eq.

(10), the error in estimating b is denoted 5b where obviously

_51_= 0 (60.c)

The resulting matrix, F,, describes the propagation of fit as well as the estimate of the

gyro constant drift rate. It is a 6 x 6 matrix. In view of Eq. (60) the non-zero elements of F, are

as follows.

f_4., = 1 (61.a) f_.5 = coz (61.b) q_.6 =-c°y (61.c)
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f_.: = 1 (6 l.d) (,5.-,= -co_ (61.e) f,_o= co, (61.g)

fJ_.3= 1 (61.h) f_.4= coy (61.i) f_.s =-co, (61.j)

III. FILTER TESTING

The observability of the unified filter was examined first using the following analysis. Let

us denote the transition matrix, which corresponds to F of Eq. (48), by Ak(X ) . This matrix

transforms Xk__, the error in the state estimate at time tk_ _ , to Xk the error in the state estimate at

time t k . If at a certain time point tin, the initial error in the state estimate, denoted by x o , can be

computed then for our purposes the system is observable. This is so because in the EKF, x is

defined as the difference between the system state vector, Xand its known estimate, IK.

Adopting the common approach to the proof of complete observability of a discrete linear

system, we express the first m measurements as follows

yj = Hj A i (J_) x o j = 0, 1, ...., m - 1 (62)

where A o(1_) = I. Form the matrix equation

Yl

Y2

Ym-I

H o

H,A,(:K)

H2A2 (:K)A,(:K)

Hm_lAm_ , (J_) • • • A, (J_)

X 0 (63)

If there are n independent rows in the right hand side matrix (the observability matrix) in Eq.

(63) then, of course, x o can be computed, hence the state is observable. Testing the filter with
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CGRO data, it was found that alter 5 measurements there were 13 independent rows in the

observability matrix, and because the size of the state vector was 13, the system was observable.

After finding that the filter operated on an observable CGRO system, the EK.F algorithm

described in the preceding was tested on data obtained from four satellites. The four satellites

were, CGRO, RXTE, ERBS, and TOMS. The launch dates of these satellites and the start time of

the data used in the testing is presented in Table I. The satellites varied in altitude,

Table I. Satellite Launch Times

Satellite Launch Start of Data

Date

RXTE Dec. 30, 1995 1996, Sept. 8, 19h 53min. 11.769sec

ERBS Oct. 5, 1984 1984, Dec. 25, 19h 22min. 12.000sec

CGRO April 5, 1991 1993, May 3, 14h 12min. 36.841sec

TOMS July 2, 1996 1997, March 15, 19h 5min. 14.514sec

inclination, resolution of the telemetry of the magnetometer data (quantization error), and

frequency at which the magnetometer telemetry was received. Table II summarizes these

Table II. Satellite Information

Satellite h

(km)
RXTE 580

ERBS 614

CGRO 340

TOMS 483

i (deg)

23.0

Error

(mG)

0.3

AT

(sec)
2

57 6.4 16

28.5 0.3 3-4

97 4 33-34

variations, where h is the average altitude (the orbits were nearly circular), i is the inclination,

'Error' is the quantization error of the telemetry, and AT is the time between magnetometer
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measurements.In addition, the accuracy of tile gyroscopes varied. (Note that the gyro data was

needed for computing the attitude dynamics model of Eqs. 47.a and 61.) The CGRO and tLXTE

gyros were considerably more accurate than those of TOMS and ERBS. (CGRO used the

Teledyne DRIRU-II gyro whose drift rate stability was 0.003 degrees per hour over six hours.

RXTE used the Kearfott SKIRU-DII which was equivalent to the DRIRU-II gyro. TOMS and

ERBS used less accurate gyros whose drift rate stability was about an order of magnitude larger).

The initial estimate of each satellite position, velocity and attitude determines the initial orbital

parameters and the initial quaternion, which constitute the initial state estimate.

Table III. Initial RSS Errors

Satellite Position Velocity Attitude

(km) (km/sec) (deg)

RXTE 2617 2.6 15.7

ERBS 1000 1.1 11.4

CGRO 1098 1.1 12.9

TOMS 2389 2.6 14

The initial estimation errors were determined by comparing the filter position, velocity, and

attitude with estimates of position, velocity, and attitude computed by NASA GSFC flight

dynamics personnel. The initial errors, which correspond to the initial estimate chosen for each

satellite are given in Table III. The errors displayed are the RSS errors.
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Fig. 2: The Evolution of the RXTE RSS Position Estimation Error.

(From Initial Error of 2617 kin).
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Fig. 3: The Evolution of the RXTE RSS Attitude Estimation Error.

(From Initial Error of 15.7 deg).

The figures presented here show the evolution of the position and attitude estimation errors for

each of the four satellites. Figures 2 and 3 show, respectively, the RXTE RSS position and

attitude errors, Figs. 4 and 5 show ERBS results, Figs. 6 and 7 show the CGRO results, and

finally, TOMS results are presented in Figs. 8 and 9. The velocity errors are not shown, but for

each satellite they have a shape similar to the position error.
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Fig. 5: The Evolution of the ERBS RSS Attitude Estimation Error.

(From Initial Error of 11.4 deg).
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Fig. 7: The Evolution of the CGRO RSS Attitude Estimation Error.

(From Initial Error of 12.9 deg).
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Fig. 9: The Evolution of the TOMS RSS Attitude Estimation Error.

(From Initial Error of 14 deg).
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Table IV, summarizestheaverageRSSerrorstbr position, velocity, and attitude tbr each

satellite (excluding transients). Note that the RXTE transients last lbr 15 orbits therefore the

R_XTE RSS errors are averaged only over the last 3 orbits. For ERBS, CGRO, and TOMS

Table IV: Average, RSS Errors (excluding transient effects)

Satellite Position Velocity Attitude

(kin) (km/sec) (deg)

RXTE" 15 0.015 1.0

ERBS 25 0.03 1.4

CGRO 20 0.02 0.2

TOMS 20 0.025 0.75

"Averages are for the last 3 orbits.

the final position errors are comparable, with averages of 20 to 30 km. All three also converge

quickly, including TOMS which started with a 2389 km position error. The position estimates

from all three appear to still be converging. However, in order to assure convergence for all four

satellites, data of one more earth revolution inside the orbit was necessary. That is, data of some

additional 16 orbits was required. Unfortunately the data spans that were available for these

satellites were limited. However, the resemblance of the results to results obtained via

simulations where, of course, data was not limited, confirm the convergence of the results with

real data.

CGRO has the lowest attitude error. The final average RSS attitude error is 0.2 deg. The

CGRO data was extensively calibrated prior to its use, the magnetometer quantization error was

small and the measurement frequency, particularly of the gyro data was high (0.256 sec between
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gyro readings).Surprisingly, the TOMS attitude errors were also relatively small, with a final

average of 0.75 degrees. This was a result of" the high inclination for TOMS, which resulted in

good observability, despite the large quantization error, the low measurement frequency, and the

un-calibrated magnetometer data. ERBS had the highest attitude error, with a final average of 1.4.

deg. This was because ERBS had the largest quantization error and also a low measurement

frequency.

RXTE took considerably longer to converge, and both the attitude and position error results

show a divergence in the middle of the span. It is noted that RXTE underwent three attitude

maneuvers during this span, which apparently led to a deviation in the drag coefficient, which

then led to the increased errors. Once the drag coefficient converged again, the position results

improved and for the last 3 orbits were very good with an average RSS position error of

approximately 15 km. The final average RSS attitude errors were approximately 1 degree. The

RXTE data was not calibrated at all and contains unknown and uncompensated disturbances,

which contributed to the larger final attitude error.

These results compare favorably with results obtained in Ref. 17 where only magnetometers

were used. In particular the present results fit the accuracy predicted in that reference. They also

fit results reported in Ref. 18, which were obtained with simulated data and are better than the

results presented in Reference 19.

The gyros that were used on board these spacecraR were well calibrated, therefore their bias

was negligible. Consequently the gyro bias states were deactivated; however, in order to examine

the ability of the filter to estimate bias, an artificial bias of 1.0 mrad/sec was added to the CGRO

gyro output and the filter was re-run with active bias states. The bias states were estimated
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without corrupting theestimationof the otherstates.Figure IO presentsthe time history of"the

estimatedbiasversusits correctvalue in thethreebody axes.

I Z J
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Fig 10: The CGRO Artificial Bias Estimates as a Function of Time (Orbits)

While successful in estimating the larger part of the gyro bias, the filter was unable to estimate

very low gyro bias values, apparently because of the large measurement noise. Moreover, when

the bias states were activated and the bias to be estimated was negligible, the orbit and attitude

estimates degraded considerably. On the other hand, in the presence of large gyro bias, the

inclusion of the bias states in the filter was imperative to obtain good orbit and attitude estimates.

A byproduct of this inclusion was the estimation of the major part of the gyro bias. The

degradation in performance of the filter, when the bias states of the estimator were activated

despite the lack of actual bias, has been explained before by the Information Dilution Theorem 2°.
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IV. CONCLUSIONS

This paperpresenteda new unified EKF algorithm for estimatingspacecraftorbit andattitude

basedon measurementsof the magneticfield and theangularvelocity of"the spacecraft.To test

this algorithm, it was first establishedthat the system,which the EKF had to estimate,was

indeedobservablefor at least theCGRO satellite.Next, magnetometerdataandgyro data from

four satelliteswereprocessedby theEKF. All four convergedto final averagesof 15 - 30km in

position, 0.015- 0.03km/secin velocity, and0.2 - 1.5degreesin attitude (all RSS).Additional

resultsindicatedthat theEKF could convergefrom extremelylargeinitial position and velocity

errors;CGROandTOMS, for example,overcameinitial positionerrorsexceeding5000km.

The datafrom eachof the satellitesdiffered in quantizationerrorandmeasurementfrequency,

and the satelliteswere at 4 different inclinations.The higher inclinations for ERBS andTOMS

resultedin quick convergence,andfor TOMS gavegoodfinal resultsdespiteinaccuraciesin the

dataandalargetimebetweenmeasurements.The coarsequantizationof the ERBStelemetryand

the infrequencyof the measurementsresulted in the lowest accuracy.On the other hand, the

extensive calibration of the CGRO data, the small quantization errors, and the high data

frequencycontributedto the quick convergenceandthehigheraccuracyachievedwith CGRO. It

wasobservedthat RXTE requiredmoretime to converge,with goodfinal resultsin position.The

RXTE magnetometerdatacontaineddisturbancesthat were not calibratedandhencecontributed

to theerrorsin attitude.

Although the filter wasdesignedto alsoestimategyrobias, in ourexperimentswedeactivated

thebias statesbecausetheavailablegyro datahadbeencalibrated(which removedthe gyrobias).

In order to testthe filter performancewhengyrobias is present,artificial gyro biaswasaddedto

the CGRO dataandthe filter biasstateswereactivated.It was found that the filter estimatedthe

29



gyro bias without degrading the quality of the attitude and orbit estimation. The filter

successfullyestimatedthe largerpart of thegyro bias,but wasunableto estimatevery.low gyro

biasvalues,probablybecauseof the largemeasurementnoise.Moreover,whentrying to estimate

negligible gyro drifts, the orbit and attitude estimatesdegradedconsiderably.However, in the

presenceof large gyro bias, it wasnecessaryto activate the bias statesin the filter in order to

obtain goodorbit andattitudeestimates.A byproductof this inclusion was the estimationof the

major partof thegyrobias.

In summaryit wasshownthatmagnetometerandgyro measurementsonboard low earth-

orbiting satellitesaresufficient for coarseorbit aswell asattitudedeterminationwhen processed

by thesingleEKF, which wasdevelopedin this work.
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